M.Math. IInd year — II Semestral exam 2005 Algebraic number theory — B.Sury Answer any six

Q 1. Let [K : Q] = n and $I \neq 0$ be an ideal in \mathcal{O}_K . Prove : (a) $I = \sum_{i=1}^n Z\alpha_i$ for some α_i 's with $K = \sum_{i=1}^n Q\alpha_i$. (b) $I \cap Z \neq 0$ and \mathcal{O}_K/I is finite.

Q 2. For any Galois extension L/K of number fields and prime ideal P of \mathcal{O}_L , show that the decomposition group at P surjects onto the Galois group of the residue field extension.

Q 3. For a prime $p \geq 3$, recall that $K = Q(\sqrt{\pm p})$ is contained in $L = Q(\zeta_p)$. Prove that a prime q splits completely in \mathcal{O}_K if, and only if, it splits into an even number of primes in \mathcal{O}_L .

Q 4. Recall that for a number field K of degree n over Q, elements $\alpha_1, \dots, \alpha_n$ in \mathcal{O}_K for which $disc(\alpha_1, \dots, \alpha_n)$ is a nonzero, square-free integer, form an integral basis. Assume this. Let $K = Q(\alpha)$ where $\alpha^3 = \alpha + 1$. Prove that $\mathcal{O}_K = Z[\alpha]$.

Q 5. Solve the equation $x^2 - 2y^2 = 1$ in integers. Quote precisely the results you use.

Q 6. Show that the radius of convergence of $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is $p^{-1/(p-1)}$ in k where $[k:Q_p] < \infty$.

Q 7. For a modulus \mathcal{M} of a number field K, define the ray class group mod \mathcal{M} . Show that $I_K^{\mathcal{M}}/i(K_{\mathcal{M}}) \cong C_K$, the class group of K.

Q 8. State the Frobenius density theorem and use it to deduce that for an abelian extension L/K, the Artin map gives a surjection from $I_K^{\mathcal{M}}$ onto Gal(L/K), provided \mathcal{M} is divisible by all ramified places.

Q 9. Let $G = \langle \sigma \rangle$ be a cyclic group of order *n* acting on a free abelian group $A = \sum_{i=1}^{d} Zv_i$ of rank *d* dividing *n* in the following manner :

 $\sigma(v_i) = v_{i+1} \forall i < d ; \sigma(v_d) = v_1.$

Compute the Herbrand quotient q(A).